

Facoltà di Architettura

Laurea magistrale in Architettura a ciclo unico

Corso di fisica tecnica ambientale

LEZIONE 4: SCAMBIO TERMICO PER CONDUZIONE

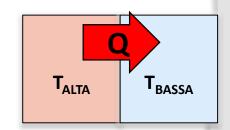
Ing. Marco Cecconi

marco.cecconi@ingenergia.it

Obiettivo

• Studiare il meccanismo di scambio termico per conduzione.

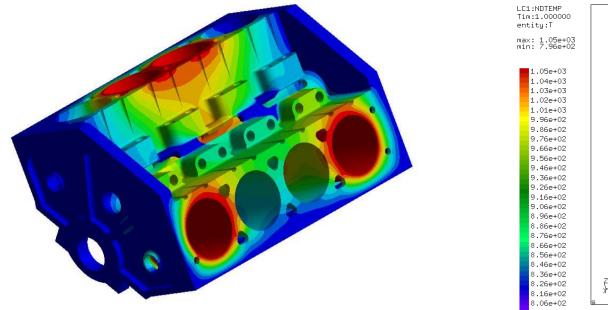
Indice

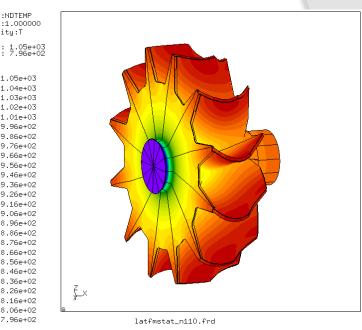

4. Scambio termico per conduzione

С	Conduzione termica	3
O	Conduzione stazionaria in una lastra piana omogenea	5
Э	Conduzione stazionaria in una lastra piana multistrato	9
O	Conduzione stazionaria in una lastra piana non omogenea	11
$\overline{}$	Conduzione dinamica in regime periodico stabilizzato	14

Conduzione termica

CONCETTI


- Conduzione = scambio di energia termica all'interno o tra corpi solidi, liquidi o gassosi in contatto tra loro. Nel caso di corpi liquidi e gassosi senza movimento macroscopico di materia.
- Dal punto di vista microscopico è una propagazione della vibrazione dalle particelle che compongono la materia, ossia una propagazione dell'energia cinetica microscopica.
- La propagazione avviene spontaneamente da zone ad alta temperatura (alta energia) verso quelle a bassa temperatura (bassa energia).

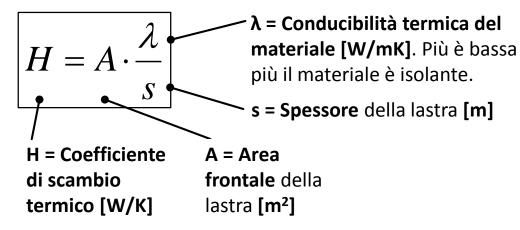


Conduzione termica

STUDIO DELLA CONDUZIONE

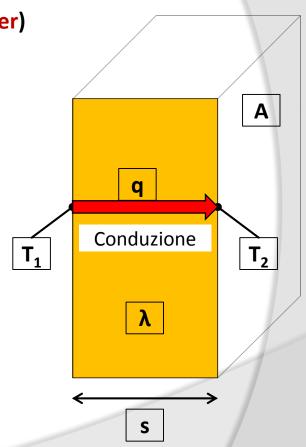
• In generale la conduzione avviene tra i corpi in modo tridimensionale, non lineare e complesso da studiare.

- Per i fini del presente corso si analizzeranno solo i seguenti casi particolari che serviranno per calcolare il flusso di calore negli edifici:
 - Conduzione stazionaria in una lastra piana omogenea;
 - Conduzione stazionaria in una lastra piana multistrato;
 - Conduzione stazionaria in una lastra piana non omogenea.

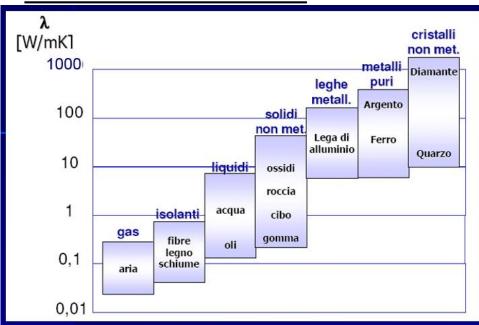

Conduzione stazionaria in una lastra piana omogenea

IPOTESI

• Ipotesi: stazionarietà, omogeneità, isotropia, lastra piana perfettamente isolata ai bordi (flusso perpendicolare), temperature superficiali uniformi.


EQUAZIONE DELLO SCAMBIO TERMICO (postulato di Fourier)

Coefficiente di scambio termico:



Potenza termica scambiata [W]:

$$q = H \cdot \Delta T = A \cdot \frac{\lambda}{s} \cdot (T_1 - T_2)$$

Conducibilità termica

2	l [W/mK]	
VETRO	1,4	
GRANITO GOMMA MATTONE CALCESTRUZZO PINO ABETE SABBIA NEVE GHIACCIO LATERIZIO ORDINARIO	2,79 0,13 1 - 1,8 1,4 0,11 0,14 0,27 0,049 1,88 0,72	
INTONACO	0,25 - 0,72	
FIBRA DI VETRO POLISTIRENE SUGHERO	0,046 0,027 0,039	Materiali isolanti

Materiale	ρ (kg/m³)	λ (W/mK)	(kJ/kgK)
Calcestruzzo			
 calcestruzzo di inerti naturali 	2000	1.01	
	2200	1.29	
	2400	1.66	
- calcestruzzo di argille espanse	1000	0.25	
	1100	0.29	0.000
	1200	0.33	0.880
	1300	0.37	
	1400	0.42	
	1500	0.47	
	1600	0.54	
	1700	0.63	
intonaci e malte			
 malte di gesso per intonaci o in pan- 	600	0.29	
nelli con inerti di vario tipo	750	0.35	
	900	0.41	
	1000	0.47	
	1200	0.58	
- intonaco di gesso puro	1200	0.35	0.840
 intonaco di calce e gesso 	1400	0.70	
 malta di calce o di calce e cemento 	1800	0.90	
 malta di cemento 	2000	1.40	0.880

Conduzione stazionaria in una lastra piana omogenea

RESISTENZA E CONDUTTANZA TERMICA

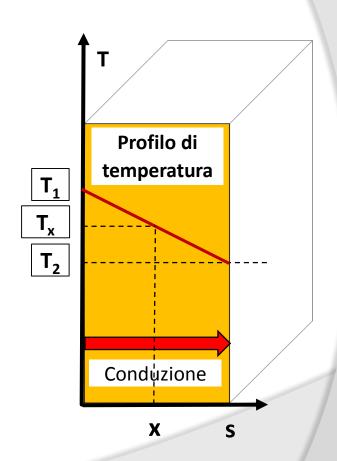
• E' utile **isolare** dalle equazioni precedenti **i termini che riguardano in modo specifico le caratteristiche costruttive della lastra**:

$$H = A \cdot \frac{\lambda}{s} = A \cdot C = \frac{A}{R} \quad \text{[W/K]}$$
Proprietà intrinseca della lastra

C = Conduttanza termica [W/m²K] di una lastra omogenea.

$$R = \frac{1}{C} = \frac{s}{\lambda}$$

R = Resistenza termica [m²K/W] di una lastra omogena.

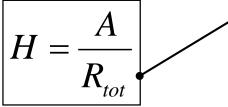

• La potenza termica scambiata è direttamente proporzionale alla conduttanza e inversamente proporzionale alla resistenza.

Conduzione stazionaria in una lastra piana omogenea

ANDAMENTO DELLA TEMPERATURA INTERNA

- La temperatura interna della lastra varia in modo lineare dalla T₁ alla T₂.
- Si pone la lastra all'origine degli assi cartesiani s-T, dove 's' è lo spessore e 'T' la temperatura.
- La temperatura interna,
 alla profondità 'x' di una lastra omogena di spessore 's' segue il seguente andamento:

$$T_x = T_1 - \frac{\Delta T}{S} x$$

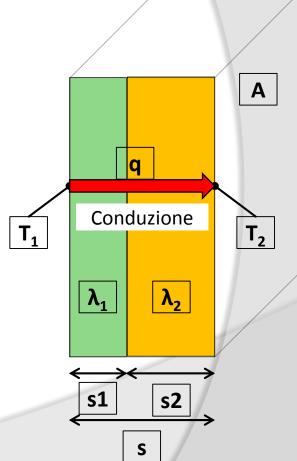

Conduzione stazionaria in una lastra piana multistrato

IPOTESI

 Ipotesi: stazionarietà, omogeneità degli strati, isotropia, lastra piana perfettamente isolata ai bordi (flusso perpendicolare), temperature superficiali uniformi.

EQUAZIONI DELLO SCAMBIO TERMICO

Coefficiente di scambio termico [W/K]:


R_{tot}= Resistenza termica totale della lastra multistrato [W/m²K]. Più è alta più la lastra è isolante.

$$R_{tot} = \sum_{i=1}^{N} R_i = \sum_{i=1}^{N} \frac{S_i}{\lambda_i}$$

R_i = Resistenza termica dei singoli strati [m²K/W]. Più è alta più lo strato è isolante.

• Potenza termica scambiata [W]:

$$q = H \cdot \Delta T = \frac{A}{R_{tot}} (T_1 - T_2)$$

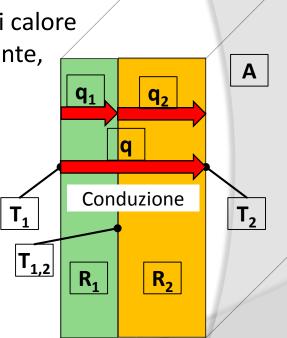
Conduzione stazionaria in una lastra piana multistrato

DIMOSTRAZIONE

Consideriamo i due strati separatamente.

$$q_1 = \frac{A}{R_1} (T_1 - T_{1,2})$$
 $q_2 = \frac{A}{R_2} (T_{1,2} - T_2)$

- L'ipotesi di stazionarietà ci dice che non c'è accumulo di calore nella parete: la potenza entrante è uguale a quella uscente, quindi $q_1 = q_2 = q$.
- Riscrivendo le equazioni in forma diversa:


$$\frac{q \cdot R_1}{A} = T_1 - T_{1,2} \qquad \frac{q \cdot R_2}{A} = T_{1,2} - T_2$$

Sommando membro a membro viene:

$$\frac{q \cdot R_1}{A} + \frac{q \cdot R_2}{A} = T_1 - T_{1,2} + T_{1,2} - T_2$$

• Da cui, facendo i conti, si giunge alla formula generale:

$$q = \frac{A}{\left(R_1 + R_2\right)} \cdot \left(T_1 - T_2\right) = \frac{A}{R_{tot}} \cdot \Delta T$$

Conduzione stazionaria in una lastra non omogenea

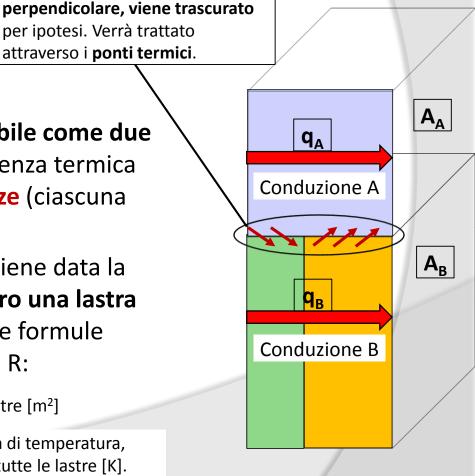
IPOTESI

• Ipotesi: stazionarietà, omogeneità dei singoli materiali, isotropia, trascurabilità del flusso non perpendicolare, temperature superficiali uniformi. Flusso termico non

> per ipotesi. Verrà trattato attraverso i ponti termici.

EQUAZIONI DELLO SCAMBIO TERMICO

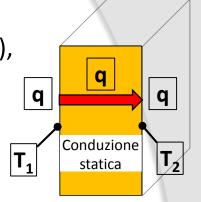
Potenza termica scambiata [W]:

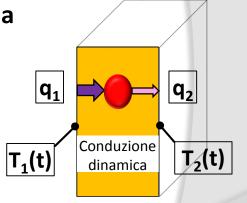

$$q = q_A + q_B = \sum q$$

- Una lastra non omogenea è considerabile come due lastre diverse affiancate, quindi la potenza termica totale è la somma delle singole potenze (ciascuna calcolata in base al tipo di lastra).
- Per molti componenti non omogenei viene data la resistenza equivalente, come se fossero una lastra piana omogenea. R_{eq} è calcolabile dalle formule precedenti ponendo come incognita la R:

$$R_{eq} = \frac{A_{tot}}{q} \Delta T$$

$$\Delta T_{tot} = \text{Area totale delle lastre [m^2]}$$


$$\Delta T_{tot} = T_1 - T_2 = \text{Differenza di temperatura, deve essere uguale per tutte le lastre [K].}$$



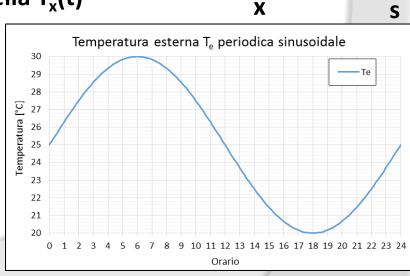
Conduzione non stazionaria (dinamica)

CARATTERISTICHE

- Viene **rimossa l'ipotesi si stazionarietà** (anche detta staticità), ciò equivale a dire che **le temperature variano nel tempo**.
- Nei sistemi dinamici la potenza entrante (q₁) è diversa da quella uscente (q₂) poiché la lastra può accumulare energia termica (rilasciandola successivamente).
- I flussi di calore attuali dipendono dalla storia passata della lastra, ciò complica notevolmente i calcoli: il sistema deve essere studiato mediante equazioni differenziali.
- Si tratta del comportamento più vicino alla realtà, ma spesso la dinamicità viene trascurata (esempio: calcoli relativi alla certificazione energetica degli edifici).
- Ai fini del presente corso viene data solo un'interpretazione qualitativa senza la pesante trattazione analitica (presente sui libri di testo).

Conduzione non stazionaria (dinamica)

TIPI DI REGIME DINAMICO

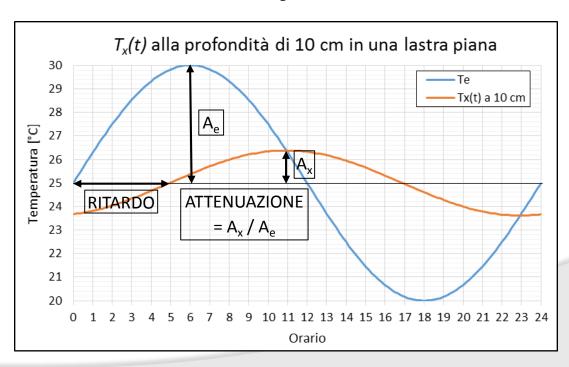

- L'andamento nel tempo delle temperature determina il tipo di regime dinamico che si instaura:
 - Regime non periodico: le temperature variano in modo qualsiasi, anche in maniera improvvisa.
 (Esempi: immersione di un corpo in un liquido freddo o caldo, accensione dei riscaldamenti dopo un lungo stop, accensione dell'auto a freddo, ecc).
 Occorre studiare il transitorio iniziale fino alle condizioni di equilibrio (potrebbero anche non esistere → perenne transitorio).
 - Regime periodico: le temperature variano in modo ciclico, in particolare sinusoidale. (Esempio: ciclo giornaliero della temperatura esterna).
 Se il ciclo rimane sempre lo stesso (periodico stabilizzato) si può evitare di studiare i transitori e analizzare il comportamento a regime.
- In questo corso tratteremo solo il regime periodico stabilizzato.

STUDIO QUALITATIVO

- Obiettivo: avere un'idea dell'effetto dell'accumulo di calore sulla trasmissione termica di una lastra piana sottoposta ad una temperatura esterna periodica sinusoidale.
- Consideriamo di avere una lastra di spessore infinito.
- Consideriamo che la T_e(t) sia variabile in modo sinusoidale nell'arco della giornata (ved. figura).

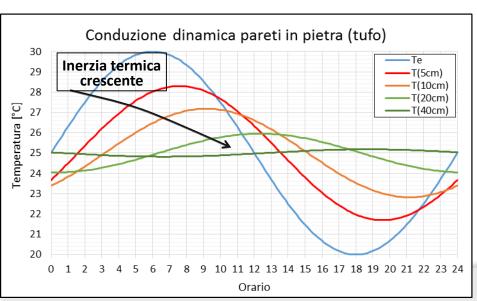
• Vogliamo trovare l'andamento nel tempo della $T_x(t)$ in un punto generico 'x' interno alla lastra.

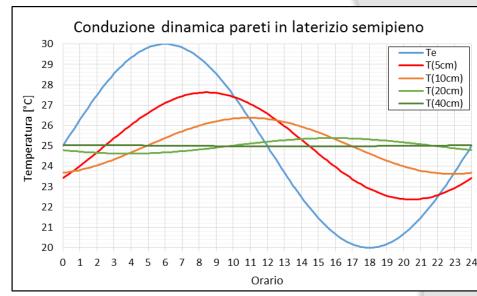
 Questo ci dice cosa succederebbe in una lastra reale di spessore 'x'.

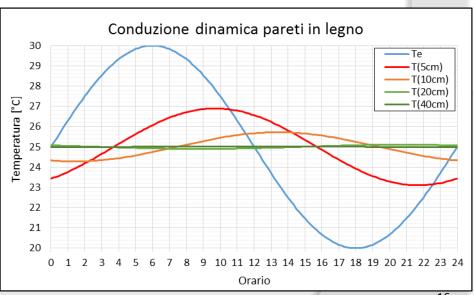


Conduzione dinamica

 $T_{e}(t)$


STUDIO QUALITATIVO


- Risolvendo l'equazione differenziale dello scambio termico, si può dimostrare che la temperatura $T_x(t)$ in un punto interno alla parete:
 - o ha lo stesso andamento sinusoidale della $T_e(t)$;
 - \circ è attenuata rispetto alla $T_e(t)$;
 - \circ è sfasata (ritardata) rispetto alla $T_e(t)$.



STUDIO QUALITATIVO

- L'<u>attenuazione</u> è direttamente proporzionale alla capacità termica e alla resistenza termica della lastra.
- Lo <u>sfasamento</u> è direttamente proporzionale alla capacità termica della lastra.
- La capacità termica determina l'inerzia termica della lastra.

CONSIDERAZIONI FINALI

- La capacità termica svolge un ruolo importante nella conduzione termica effettiva (dinamica) delle lastre (e quindi delle pareti), determinandone l'inerzia termica. Visto che C=M·c_p → sono massa e calore specifico i parametri importanti.
- Pareti con elevata inerzia termica:
 - o tendono a **livellare la temperatura della loro faccia interna** ad un valore intermedio rispetto agli estremi della temperatura esterna;
 - posticipano nel tempo il picco di calore (o di freddo);
 - sono utili soprattutto nel periodo estivo per abbattere i picchi di calore giornalieri e in inverno per accumulare il calore solare (es. serre solari).
- Maggiori informazioni nelle slide sulla trasmissione termica in edilizia.

GRAZIE DELL' ATTENZIONE

Ing. Marco Cecconi

marco.cecconi@ingenergia.it

