

Facoltà di Architettura

Laurea magistrale in Architettura a ciclo unico

Corso di fisica tecnica ambientale

LEZIONE 10: ESERCIZIO SUI CARICHI TERMICI INVERNALI ED ESTIVI

Ing. Marco Cecconi

marco.cecconi@ingenergia.it

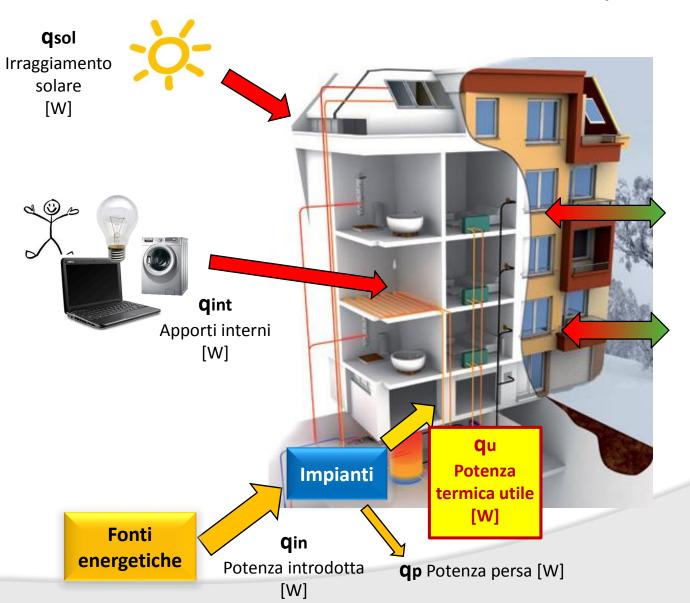
Obiettivo

- Calcolare i carichi termici sensibili di picco invernali ed estivi di un immobile,
 al netto degli impianti:
 - o potenza termica massima necessaria nell'ora più fredda dell'anno;
 - o potenza frigorifera massima necessaria nell'ora più calda dell'anno.

Indice

10 Esercizio sui carichi termici

• Ipotesi di calcolo	3
Modalità e procedimento di calcolo	4
• 1) Analisi dell'immobile	6
• 2) Calcolo dei parametri termofisici	11
• 3) Calcolo dei flussi termici sensibili	19
• 4) Calcolo del bilancio termico	26


Principali ipotesi di calcolo

- Condizioni stazionarie (parametri di calcolo tutti costanti: temperature, irraggiamento, apporti interni, ecc);
- Edificio monozona con temperatura dell'aria interna uniforme;
- **Bilancio termico sensibile** (no flussi di vapore, umidificazione e deumidificazione);
- Materiali isotropi ed omogenei;
- Valori ambientali estremi invernali ed estivi:
 - Ora più fredda fissata alle ore 6:00 del giorno più freddo di Gennaio;
 - Ora più calda fissata alle ore 13:00 del giorno più caldo di Luglio;
- Ulteriori ipotesi indicate durante il calcolo.

NOTA IMPORTANTE: Il risultato del calcolo può variare sensibilmente a seconda delle ipotesi fatte!

Modalità di calcolo

BILANCIO TERMICO SENSIBILE MONOZONA DI PICCO INVERNALE/ESTIVO

qtrScambi per
trasmissione
dell'involucro
[W]

qvScambi per
infiltrazioni e
ventilazione
[W]

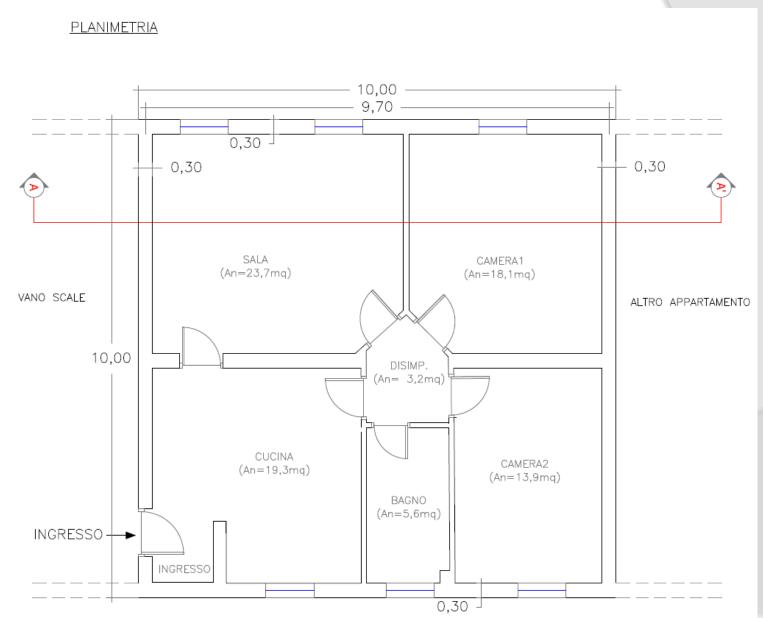
Calcolo dei carichi termici

PROCEDIMENTO GENERALE

1) Analisi dell'immobile:

- delimitazione della zona termica
- calcolo delle grandezze geometriche
- determinazione delle grandezze ambientali
- o determinazione dei parametri di gestione

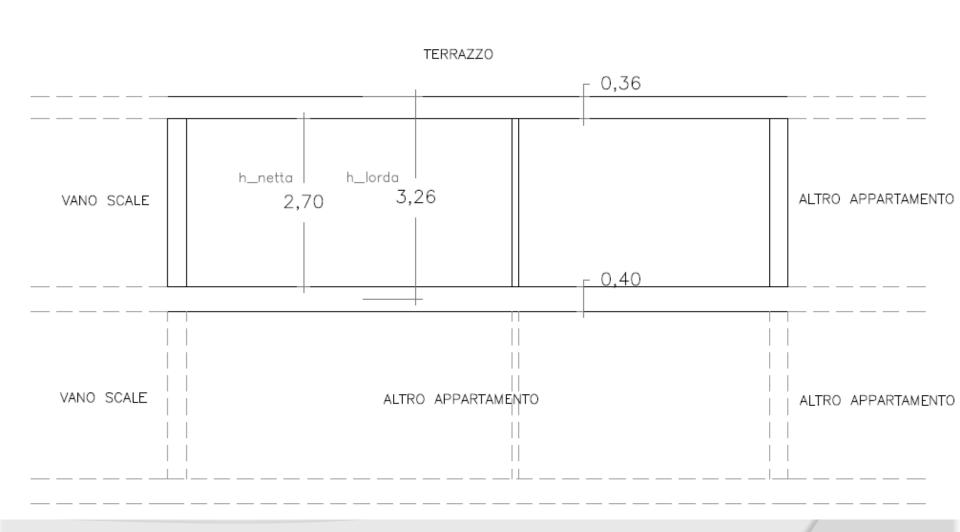
2) Calcolo dei parametri termo-fisici delle strutture:


- dimensioni
- trasmittanza termica
- o trasmittanza solare e fattori di ombreggiamento

3) Calcolo dei flussi termici sensibili:

- trasmissione
- o ventilazione
- apporti interni
- o apporti solari
- 4) Calcolo del bilancio termico sensibile e determinazione del carico termico utile netto.

PLANIMETRIA



Esercizio carichi termici

SEZIONE A-A'

SEZIONE A-A'

DELIMITAZIONE DELLA ZONA TERMICA

- La zona termica è unica e costituisce la zona di calcolo. E' delimitata dall'esterno mediante le pareti che definiscono l'involucro.
- La zona termica confina a nord e sud con l'aria esterna, ad est col vano scale, ad ovest con un altro appartamento, sopra con il terrazzo e sotto con un altro appartamento.
- Non si considerano disperdenti le superfici a contatto con altri ambienti riscaldati (queste pareti vengono trascurate nei calcoli poiché ΔT=0).

CALCOLO DELLE GRANDEZZE GEOMETRICHE RELATIVE ALLA ZONA TERMICA

- Le grandezze nette non includono le pareti. Le grandezze lorde includono interamente le pareti esterne e per metà le pareti confinanti con altri spazi.
 - Area lorda = 97,0 mq
 - Area netta = 83,8 mq
 - Altezza lorda = 3,26 m
 - Altezza netta = 2,70 m
 - Volume lordo = 316 mc
 - Volume netto = 226 mc

DETERMINAZIONE DELLE GRANDEZZE AMBIENTALI

 L'immobile in oggetto è situato a Roma, perciò è sottoposto alle seguenti condizioni ambientali:

INVERNALI (condizioni estreme **gennaio**, **ore 6:00**):

- Temperatura esterna = 0°C (da DPR 1047/77 e UNI 5364)
- Irraggiamento solare = 0 W/m² (da ipotesi calcolo di picco)

ESTIVE (condizioni estreme **luglio, ore 13:00**):

- Temperatura esterna = 35 °C (da dati climatici storici)
- o **Irraggiamento** solare (da dati climatici storici orari):
 - Nord = 283 W/m²
 - Est = 231 W/m²
 - Sud = **368 W/m**²
 - Ovest = 323 W/m²
 - Orizzontale = 940 W/m²

DETERMINAZIONE DEI PARAMETRI DI GESTIONE

• L'immobile in oggetto è **adibito a residenza** ed è caratterizzato dai seguenti **parametri di gestione**:

INVERNALI (condizioni estreme a **gennaio**, **ore 6:00**):

- Temperatura interna di comfort (set-point impianto di riscaldamento) = 20°C (da DPR 74/2013 e DPR 412/93 s.m.i.)
- Ricambio d'aria = ventilazione naturale 0,5 volumi/ora (valore tipico)
- Occupazione = 0 persone (da ipotesi calcolo di picco)
- Apparecchiature = nessuna (da ipotesi calcolo di picco)

ESTIVE (condizioni estreme a luglio, ore 13:00):

- Temperatura interna di comfort (set-point impianto di raffrescamento) = 26°C (da DPR 74/2013)
- Ricambio d'aria = ventilazione naturale 0,5 volumi/ora (valore tipico)
- Occupazione = 6 persone
- Apparecchiature = frigorifero, illuminazione, 2 computer, scaldabagno, cucina, forno acceso Ing. Marco Cecconi – Corso di fisica tecnica ambientale per l'architettura

2) Calcolo dei parametri (richiami di teoria)

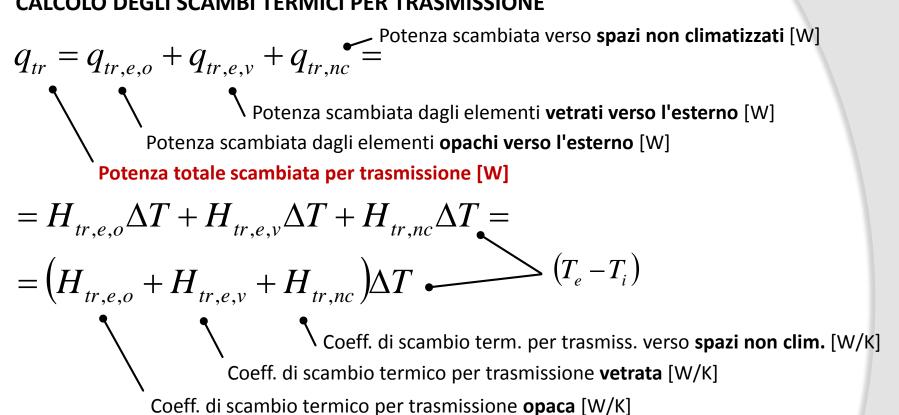
CARICO TERMICO SENSIBILE ISTANTANEO

$$q_{u,sens} = \sum q_{tr} + \sum q_{sol} + \sum q_{ve,sens} + \sum q_{int,sens}$$
 [W]

• Carico termico sensibile utile di picco invernale:

$$q_{u,sens,peak,inv} = \max(-q_{u,sens})$$

Valore negativo = dispersioni termiche.
Occorre compensarle introducendo calore.


• Carico termico sensibile utile di picco estivo:

$$q_{u,sens,peak,est} = \max(q_{u,sens})$$

Valore positivo = apporti termici. Occorre compensarle espellendo calore.

2) Calcolo dei parametri (richiami di teoria)

CALCOLO DEGLI SCAMBI TERMICI PER TRAS

• I coeff. di scambio termico totali sono la **somma dei singoli coeff.** per ogni parete:

$$\begin{split} H_{tr,e,o} &= \left(AUf_{pt}\right)_{tr,nord,o} + \left(AUf_{pt}\right)_{tr,sud,o} + \left(AUf_{pt}\right)_{tr,up,o} \\ H_{tr,e,v} &= \left(AU_{eq}f_{pt}\right)_{tr,nord,v} + \left(AU_{eq}f_{pt}\right)_{tr,sud,v} \\ H_{tr,nc} &= \left(AUb_{tr}f_{pt}\right)_{tr,scale} \end{split}$$

STRUTTURE OPACHE

Parete verticale perimetrale:

Trasmittanza termica:		Parete verso l'esterno			
		S	λ	С	R
STRATO	MATERIALE	[m]	[W/mK]	[W/m ² K]	[m ² K/W]
1 (esterno)	Adduttanza esterna			25,000	0,040
2	Intonaco in malta di calce	0,015	0,900	60,000	0,017
3	Laterizio forato da 120mm	0,120		4,167	0,240
4	Intercapedine	0,070		5,500	0,182
5	Laterizio forato da 80mm	0,080		5,000	0,200
6	Intonaco in malta di calce	0,015	0,900	60,000	0,017
7 (interno)	Adduttanza interna			7,692	0,130
	TOTALI	0,30			0,825

Verso scale				
	R			
	$[m^2K/W]$			
	0,130			
	0,017			
	0,240			
	0,182			
	0,200			
	0,017			
	0,130			
	0,915			
Verso il vano scale:				

 $1,093 \text{ W/m}^2 \text{K}$

La resistenza
superficiale esterna
delle pareti confinanti
verso locali non
climatizzati è
maggiore rispetto a
quelle verso l'esterno.

Fattore di assorbimento solare = 0,2 (p	areti molto chiare)
---	---------------------

Dimensioni delle pareti disperdenti opache =

Trasmittanza termica (U)

	LE PARETI DISPERDENTI			
Verso l'ESTERNO		Verso locali NON CLIMATIZZATI		
ESPOSIZIONE	[m²]	[m²]		
Nord	9,70 x 3,26 - 3x(1,0 x 1,30) = 27,72	0		
Sud	9,70 x 3,26 - 3x(1,0 x 1,30) = 27,72	0		
Est	0	10 x 3,26 = 32,60 *		
Ovest	0	0		
Orizzontale	0	0		

* Il portone di ingresso è stato considerato assimilato alla parete opaca.

Incremento delle dispersioni per ponti termici = 10% (Fpt = 1,1)

Verso l'esterno:

1,212 W/m²K

STRUTTURE OPACHE

- Solaio di copertura:
 - Trasmittanza termica:

		GRANDEZZE			
		S	λ	С	R
STRATO	MATERIALE	[m]	[W/mK]	[W/m ² K]	[m ² K/W]
1 (esterno)	Adduttanza esterna			25,000	0,040
2	Pavimentazione da esterno	0,025	1,000	40,000	0,025
3	Massetto con argilla espansa	0,050	0,210	4,200	0,238
4	Polistirene espanso	0,060	0,035	0,583	1,714
5	Cartone catramato	0,010	0,500	50,000	0,020
6	Solaio in C.A. e pignatte	0,260		2,857	0,350
7	Intonaco in malta di calce	0,015	0,900	60,000	0,017
8 (interno)	Adduttanza interna			10,000	0,100
	TOTALI	0,42	·		2,504

* Si considera sia d'estate che d'inverno la resistenza superficiale minima (flusso ascendente) a favore della sicurezza.

- Fattore di assorbimento solare = 0,3 (piastrelle del terrazzo chiare)
- Dimensioni dei solai disperdenti =

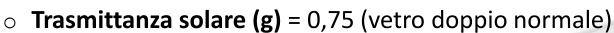
	SUPERFICIE LORDA DEL SOLAIO DISPERDENTE			
	Verso l'ESTERNO Verso locali NON CLIMATIZZATI			
ESPOSIZIONE	[m²]	[m²]		
Orizzontale	97,00	0		

Incremento delle dispersioni per ponti termici = 10% (Fpt = 1,1)

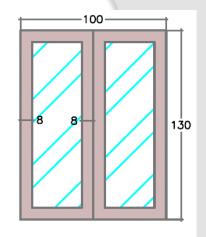
STRUTTURE VETRATE

• Infissi:

o Trasmittanza termica:


Stratigrafia	Stratigrafia superficie trasparente GRANDEZZE				
		S	λ	С	R
STRATO	MATERIALE	[m]	[W/mK]	$[W/m^2K]$	[m ² K/W]
1 (esterno)	Adduttanza esterna				0,040
2	Vetro	0,004	1,000		0,004
3	Intercapedine d'aria	0,012		6,5	0,154
4	Vetro	0,004	1,000		0,004
5 (interno)	Adduttanza interna				0,130
	TOTALI	0,02			0,332

Т	rasmittanza termica trasp (Ut)	3,013 W/m ² K


Stratigrafia superficie opaca		GRANDEZZE			
		S	λ	C	R
STRATO	MATERIALE	[m]	[W/mK]	$[W/m^2K]$	[m ² K/W]
1 (esterno)	Adduttanza esterna			25,0	0,040
2	Legno abete	0,060	0,120		0,500
3 (interno)	Adduttanza interna			7,7	0,130
	TOTALI	0,06			0,670

[Trasmittanza termica opaca (Uo)	1,493 W/m ² K
П	masimitanza termica opaca (00)	

Trasmittanza termica equival. della finestra (Ueq)	2,399 W/m ² K
--	--------------------------

Dimensioni finestrature =	SUPERFICI LORDE INFISSI Verso l'ESTERNO
ESPOSIZIONE	[m²]
Nord	$3x(1,0 \times 1,30) = 3,90$
Sud	3x(1.0 x 1.30) = 3.90

Fattore di telaio =	40,4%	
Area opaca =	0,525	mq
Area trasparente =	0,775	mq
Spessore telaio =	8	cm
Area totale =	1,3	mq
Altezza =	1,3	m
Larghezza =	1,0	m

COEFFICIENTE DI SCAMBIO TERMICO PER TRASMISSIONE VERSO L'AMBIENTE ESTERNO

$$H_{tr,e,o} = (AUf_{pt})_{tr,nord,o} + (AUf_{pt})_{tr,sud,o} + (AUf_{pt})_{tr,orizz,o}$$

$$H_{tr,e,v} = (AU_{eq}f_{pt})_{tr,nord,v} + (AU_{eq}f_{pt})_{tr,sud,v}$$

	SUPERFICI OPACHE v. esterno				SUPI	RFICI VE	TRATE v. es	sterno
	Ae,o	Uo	Fpt	Htr,e,o	Ae,v	Uv	Fpt	Htr,e,v
ESPOSIZIONE	[m²]	[W/m ² K]		[W/K]	[m²]	[W/m ² K]		[W/K]
Nord	27,72	1,212	1,10	37,0	3,9	2,399	1,00	9,36
Sud	27,72	1,212	1,10	37,0	3,9	2,399	1,00	9,36
Est								
Ovest								
Orizzontale	97,00	0,399	1,10	42,6				
TOTALE	152,44			116,5	7,8			18,7

$$H_{tr,e,o} = 116,5 W/K$$

$$H_{tr,e,v} = 18,7 W/K$$

COEFFICIENTE DI SCAMBIO TERMICO PER TRASMISSIONE VERSO SPAZI NON CLIMATIZZATI

$$H_{tr,nc} = \left(AUb_{tr}f_{pt}\right)_{tr,scale}$$

 b_{tr} = Fattore di riduzione del ΔT esterno dovuto allo spazio non climatizzato [adim]

Fattore di correzione b tr.x

	Ambiente confinante	b _{tr,x}
Ar	nbiente	
-	con una parete esterna	0,4
-	senza serramenti esterni e con almeno due pareti esterne	0,5
-	con serramenti esterni e con almeno due pareti esterne (per esempio autorimesse)	0,6
-	con tre pareti esterne (per esempio vani scala esterni)	0,8
Pi	ano interrato o seminterrato	
-	senza finestre o serramenti esterni	0,5
-	con finestre o serramenti esterni	0,8
So	ottotetto	
-	tasso di ventilazione del sottotetto elevato (per esempio tetti ricoperti con tegole o altri materiali di copertura discontinua) senza rivestimento con feltro o assito	1,0
-	altro tetto non isolato	0,9
-	tetto isolato	0,7
Ar	ee interne di circolazione (senza muri esterni e con tasso di ricambio d'aria minore di 0,5 h ⁻¹)	0,0
	ee interne di circolazione liberamente ventilate (rapporto tra l'area delle aperture e volume dell'ambiente aggiore di $0,005~\text{m}^2/\text{m}^3$)	1,0

COEFFICIENTE DI SCAMBIO TERMICO PER TRASMISSIONE VERSO SPAZI NON CLIMATIZZATI

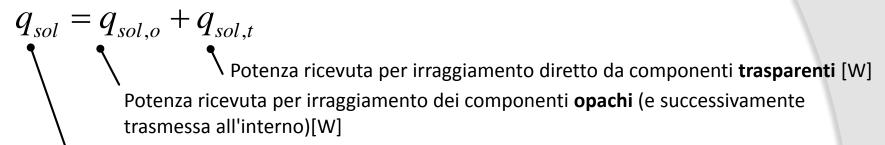
$$H_{tr,nc} = \left(AUb_{tr}f_{pt}\right)_{tr,scale}$$

	SL	SUPERFICI verso spazi non climatizzati				
	Ao,nc	Unc	btr	Fpt	Htr,nc	
ESPOSIZIONE	[m ²]	$[W/m^2K]$			[W/K]	
Nord						
Sud						
Est	32,60	1,093	0,60	1,10	23,5	
Ovest						
Orizzontale						
TOTALE	32,60				23,5	

$$H_{tr,nc} = 23.5 W / K$$

TOTALE DEGLI SCAMBI TERMICI PER TRASMISSIONE

$$\begin{aligned} q_{tr} &= q_{tr,e,o} + q_{tr,e,v} + q_{tr,nc} = \\ &= \left(H_{tr,e,o} + H_{tr,e,v} + H_{tr,nc}\right) \Delta T = \end{aligned}$$


• Scambio termico per trasmissione di picco invernale:

$$q_{tr,peak,inv} = (116,5+18,7+23,5)(0-20) = -3174 W$$

• Scambio termico per trasmissione di picco estivo:

$$q_{tr,peak,est} = (116,5+18,7+23,5)(35-26) = 1428 W$$

TOTALE DEGLI APPORTI SOLARI

Potenza totale ricevuta per irraggiamento [W]

APPORTI SOLARI DEI COMPONENTI OPACHI

$$q_{sol,o} = \sum F_{sh} a_{sol} I_{sol} R_{s,est} AU$$

NOTA: Viene trascurato l'apporto solare dei telai (opachi) delle finestre.

Apporto termico solare da pareti opache invernale:

$$q_{sol,o,inv} = 0 W$$

Apporto termico solare da pareti opache estivo:

		SUPERFICI OPACHE IRRAGGIATE					
	Fsh	a,sol	Isol	Rs,est	Α	U	qsol,o
ESPOSIZIONE			[W/m ²]	[m ² K/W]	[m²]	[W/m ² K]	[W]
Nord	1,00	0,20	283,0	0,04	27,72	1,212	76,1
Sud	1,00	0,20	368,0	0,04	27,72	1,212	98,9
Est							
Ovest							
Orizzontale	1,00	0,30	940,0	0,04	97,00	0,399	437,0
TOTALE					152,44		612

$$q_{sol,o,est} = 612 W$$

APPORTI SOLARI DEI COMPONENTI VETRATI

$$q_{sol,t} = \sum F_{sh} (1 - F_F) gAI_{sol,p}$$

• Apporto termico solare da pareti vetrate invernale:

$$q_{sol,t,inv} = 0 W$$

Apporto termico solare da pareti vetrate estivo:

		SUPERFICI VETRATE IRRAGGIATE				
	Fsh	Ff	g	Isol	Α	qsol,t
ESPOSIZIONE				$[W/m^2]$	[m²]	[W]
Nord	1,00	0,40	0,75	283,0	3,90	493,6
Sud	1,00	0,40	0,75	368,0	3,90	641,9
Est						
Ovest						
Orizzontale						
TOTALE					7,80	1135

$$q_{sol,t,est} = 1135 W$$

TOTALE DEGLI APPORTI SOLARI

$$q_{sol} = q_{sol,o} + q_{sol,t}$$

Apporto termico solare totale invernale:

$$q_{sol,peak,inv} = 0 W$$

Apporto termico solare totale estivo:

$$q_{sol,peak,est} = 612 + 1135 = 1747 W$$

FLUSSI PER VENTILAZIONE/INFILTRAZIONI

$$q_{ve,sens} = \rho c_p g_{ve} \Delta T$$

..dove:

$$g_{ve} = \frac{nV}{3600} = \frac{0.5 \cdot 226}{3600} = 0.0314 \frac{m^3}{s}$$

• Flusso termico sensibile di picco per ventilazione verso l'aria esterna invernale:

$$q_{ve,peak,inv} = 1,204 \cdot 1005 \cdot 0,0314 \cdot (0-20) = -760W$$

• Flusso termico sensibile di picco per ventilazione verso l'aria esterna estivo:

$$q_{ve,peak,est} = 1,204 \cdot 1005 \cdot 0,0314 \cdot (35 - 26) = 342W$$

APPORTI INTERNI

$$q_{\text{int},sens} = \sum_{k=1}^{N} q_{k,sens}$$

Apporti interni sensibili di picco invernali:

$$q_{ ext{int}, peak, inv} = 0 W$$

Apporti interni sensibili di picco estivi:

	APPORTO TERMICO
FONTE	[W]
Persone	360
Frigorifero	200
Illuminazione	300
2 computer	300
Scaldabagno	100
Cucina	1.500
Forno	1.500
TOTALE	3.900

$$q_{\text{int},peak,est} = 3900 W$$

4) Calcolo del bilancio termico sensibile

CARICO TERMICO SENSIBILE ISTANTANEO

$$q_{u,sens} = \sum q_{tr} + \sum q_{sol} + \sum q_{ve,sens} + \sum q_{int,sens}$$
 [W]

Carico termico sensibile utile di picco invernale:

$$q_{u,sens,peak,inv} = -(-3174 - 760) = 3934 W$$

Potenza termica da introdurre per compens. le dispersioni massime invernali.

Carico termico sensibile utile di picco estivo:

$$q_{u,sens,peak,est} = 1428 + 1747 + 342 + 3900 = 7417 W$$

Potenza termica da sottrarre per compensare gli apporti massimi estivi.

ATTENZIONE: Si tratta di carichi termici utili (o netti), poiché sono quelli necessari in ambiente. Per poter dimensionare gli impianti termici occorre aggiungere anche le perdite dovute ai componenti dell'impianto (es. tubazioni).

GRAZIE DELL' ATTENZIONE

Ing. Marco Cecconi

marco.cecconi@ingenergia.it

